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OCCUPANCY MODELS, BELL-TYPE POLYNOMIALS AND NUMBERS

AND APPLICATIONS TO PROBABILITY

T. Cacoullos

Statistical Unit, University of Athens

Abstract

Multipartitional extensions of Bell (unipartitional) polynomials

are shown to be a natural and strong tool in the study of multivariate

compound discrete distributions through their generating functions.

Modifications of exponential polynomials simplify proofs in

fluctuation theory, whereas asymptotic properties of such polynomials

are used to establish the asymptotic normality of a wide class of

combinatorial distributions, including Stirling and C-numbers.

Extensions of these numbers, the non-central Stirling numbers and the

mutli-parameter Stirling and C-numbers are studied in conjunction with

distributional, estimation and characterization problems related to

compound distributions. Combinatorial and occupancy-model aspects

are also discussed. Diagnostic tests in data analysis are pointed out.

Keywords: Multipartitional Bell polynomials, non-central Stirling

numbers, multiparameter Stirling and C-numbers,

combinatorial distributions, fluctuation theory, compound

distributions, characterizations, regression function.



OCCUPANY NMELS, BELL-TYWE POLYNtMAS AND NMIRS

AND THEIR APPLICATION IN PMMA TY ThEORY

1. GMRAL BACKGRD OF RESEAI AREA

The developmet of classical probability theory has its origins in games of

chance and is primarily of the discrete type. Even today, it is customary to

introduce and describe many discrete probability models in terms of urn or

occupancy models. The models themselves and their ramifications involve concepts

and methods of combinatorial analysis. It is not, then, surprising that

ccmbinatorics, in one form or another, has always been in the foreground of

probabilistic and statistical-inferential arguments since the times of Pascal and

Fermat.

However, in spite of an abundance of probability-related combinatorial

results in the vast mathematical literature over a long period of two or three

centuries, many of the results are "rarckly" and sparsely scattered in so many

books and professional journals so that they either remain unknown to the majority

of professionals or keep being rediscovered all the time. The gap was widening

also due to the fact that certain closely related areas of mathematics, such as

the calculus of finite differences, were neglected in modern curricula. It is

only recently that attempts have been made to tie up such results in a systematic

umanner. For these reasons, monographs such as Jordan (1950), David and

Barton (1962) and Johnson and Kotz (1977) signify a good move towards a unified

approach of the methodology in the wide-scope area of cwmbinatorial probability.
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kMThs research concerns: occuancy or urn models, Bell cr partition polynomi-

als and certain kinds of numbers (integers) relating to Bell polynonials such as

Bell numbers. One can arrive at these nurbers from different directions, as will

become clear in the sequel; nevertheless we cover all such numbers, which are also

connected to cocupancy models, under the nave "Bell-type" numbers.

Occupancy models and distriiuticns are well understood. Urn models con-

stitute the usual, though not the only way to introduce most discrete distribu-

tions. The recent monograph by Johnson and Kotz (1977) provides a caiprehensi-

ve exposition of this approadh.

Partition polynonials, also called Bell polynomials by Riordan (1958 ,

1968) are connected with the derivatives of a composite function and provide a poder-

ful tool in the treatment of corbinatorial and probabilistic problems. Let

A(t) = f(9(t))

and defi Dt =d/dt, Du =d/du, (1)

A E-tDA(t), fn- D= f(u) with ug(t), LPg(t)= gn.

Then

A'= Yn (f ; 
1 1... gn) (2)

where y ! a partition polynomial defined by
k1  k k

-(n) ki,. I . 2. n::'

and L6e skmtion is over all partiiions In) of n, i.e., all non-negative integers

kI ... kn such that

k1 + 2k1 ... +nkVn,

ark k 1+I + k2 + .. k

4:
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represents the number of parts in a given partiti . The 5O called exponential po-

lynomials, En(gl,..gn), introduced by Bell (1934 a, b,),are a special case of ¥n'

namely, when fk - 1, k - 1, 2,... Thus

(g,= Y(1; g,...g = -g Dt eg , gg(t) (3)

The exponential generating functin (egf) of the sequence {Yn' n'°(Yo--1)

of Bell polynomials can be written in the form:

exp (uY) = Y Y (fIl..n
k~f (4)

=k !1~k ex~r)f G (u)]

where,in the exponential expasins, we set(5)

G(u) = expr yn" (5)

It should be menticned that (4), in conjunction with (5) , attests to the

general fact that the algebra associated with egf's is what is known as the Blis-

sard (or symbolic or unbral) calculus; the algebra of ordinary generating functi-

ons is knoun as the Cauchy algebra.

In the umbral calculus, a sequence an may be replaced by the sequence

a of powers and when all creraticns are nerforrmed the exponents are changed

back to indices. For f -ample, if A (u), B (u) and C (u) are the egf's of the se-

quences ak, bk and ck  , respectively, andI
C (u) = A (u).B (u),

then n

C = I (n) bCn = (k) an-k

so that, in the umbral calculus notation,

cn = (a + b), a= n # b - bn

the egf's behave like espczential functions:

k '
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C (u) exp (cu) e4 (a + b)= exp (au) exp (bu)= A (u) B (u)

The exponential polynomial En(tl,.. .tn is closely related to the generat-

ing function (gf), Ricrdan (1958),

C (tj tn) = E C (k k" ) t '',...t n' (6)
it W)

of the number C (ki p,... kn ) of rnermutaticns of n elements with k unit cycles, k2

2-cycles, etc. Cn is the cycle indicator of the symmetric group and is expres-

sed in terms of En (t,...tn):

Cn (t,...tn)E n(tl, t 2 ,  2! t3,....,(n-1) ! tn).i

The ralynamials En are ccnnected with several enumeration prctlens. For

detailsw refer e.-., to Riordan (1958, 1968). We mention here, e.g., that

Cn (t,...t) is equal to the gf.of the sijnless Stirlinq numbers of the first kind

k+nc(n,k) = t-1) s(n,k), where s(n,k) are the Striling nu#-bers of the first kind;

c(n,k) is equal to the nu-er of pernutaticns of n elements with k cycles; similar-

ly, C (o, t,...,t) is the crf of the number of permutations with k cycles no one ofn

which is a unitary cycle. Mbreover, the polynomials E (t, tn) themselves,in e-
n I, - tn)

xactly the same manner as the Cn, are related to ordered cycles of permutations.

En is the ordered-cycle indicator and is associated with Stirling numbers of the

second kind, S(n,h). For e>xTple, the polynomials

'n kSn (x)=En (m...x)=Z S (n,k) x (7)
for x= 1 give the Bell numbers; S n(1) equals the number of partitions of n.

ni

Another application of En(ci,...gn) with gk = (S)kX, s> o or an integer,

leads to the olyncmials

Cn,s(x) En( (s)lX ,...n(s) n x C (n, k, s)' x) k:0



where the C-numbers C (n,k,s) were introduced by Cacoullos and Ciaralambides (1975)

and further studied by Charalambides (1974, 1977). These authors showed in a se-

ries of papers (see also Cacoullos 1977) that Stirling numbers of the first and

second kind and C-numbers, as well as certain generalizations of these, errge,qui-

te naturally,in a unified treatment, via eqf's, of the minimxm variance unbiased

estimation problem for left-truncated logarithmic series, Poisson, binomial and

negative binomial distributions.

The role played by Stirling nunbers in occupancy and distribution problems

is well kncwn; also their interpretation in terms of cycles of permutations (Rior-

dan 1958). Analogous caminatorial interoretationsalong with their probabilistic

counterparts, can be given for the C-numhers and their generalizations. If s is a

positive integer the numbersC (n,k,s) are associated with the classical coupons

collector's problem. If s is a negative integer then n'..C(n,k,-s) /k. equals the

nunbhr of ways n> k indistinguishable balls can be distributed into k groups, each

of s cells, so that each groun contains at least one ball. The generalized C-num-

bers, C(n,k,s,r),orresncnd to the situation where each group is to contain at

least r balls (Charalanbides, 1974),

The above type of numt)ers anpear in other contexts as well. For exainle,

the generalized Stirlina numbers of the second kind, in our notation S (n,b,r),coin-
(bj)for j=o, in the notation of Sobel et al (1977). Theycicle with the numbers S or jo ntentto fSble l(97.Te
(nr) (k)

were introduced in the study of the Tvpe 1-Diriclet integral I (rn). This is

a multivariate extension of the incomplete beta function, I p, for multino',dal-re-

lated probabilities. In fact,

n (b)
S(n,b,r) - = - /b(r,n) (8)

(b)
and I1/b(rn) is -it nr ability that each cell in a binomial distribution
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receives at least r balls. Tables of S(n,b,r) are given in Sobel (op.cit.) for b=1

(1) 23, nzb(1) 25, r-1 (1) [nAhi. For bm1 , the incomplete beta function

(1) n-r+)= 1 xr 1 (lx) n-rdx
p p B(r,n+1-r) S

can he written as
n-r

(,1 ) =i r P(r+i)JI(1(r,n)= pr  qJ

P j=0 r(r)j.

whose generalization leads to a Type 2-Dirichlet integral (see Cacoullos and Sobel,

1966).

Apparently, the first -ysteatic attempt to use Bell polynomials in

prcl-ability has been the recent study, Charalarmhides (1977) of ca'iound(generali-

zed) discrete distributions. Let N and Y be independent integer -valued randa va-

riables with probability generating functions (p-rf) f and g, respectively. Then

the rxgf, P(t) say, of the ccrpound distribution of

Sr X +x2 + ... + XN

is given by the cmrpound function P(t)= f(g(t)Q and )in view of (1) and (2) and the

elementary result

w readily obtain the cantoud probability functicn in the form

Po (f'g)=f(g(O))

n n! yn(f;g 1 , ... ,Ign)(9

en nf'g n-.nwhere n u f(u) u=q(o) , %~nDtg~t)i =o

rran a recurrence relation for Y one obtains the basic recurrence
n

Pl(fq) n 1  f Pn(f,g), fkf

k.O

Similar results can be given for the nonents of SN .
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INTRODUCTION AND SUMMARY OF RESEARCH

Within the general scope of the research project, the results, are

exhibited in the following Sections 2-8. Whenever the results are already

published, only main ideas and summaries are given in these sections. When-

ever the work is still in the process of publication, it is presented in an

appendix.

Section 2 gives some general theory concerning compound (generalized)

discrete distributions. It also discusses ad hoc estimation procedures in

conjunction with the problem of modeling certain real accident data by using

the usual discrete distributions.

Section 3 presents extensions of Bell polynomials appropriate for the

treatment of multivariate compound distributions.

Section h deals with the asymptotic normality of general combinatorial

distributions, including Stirling and C-numbers as special cases.

In Section 5, non-central Stirling numbers of the first and second kind

are defined and their applications in convolutions of classical discrete

distributions as well as their combinatorial interpretations in occupancy

models are discussed. Another extension, the multiparameter Stirling and

C-numbers, motivated by the estimation problem for multiply truncated power

series distributions is further discussed in Appendix A.

Some modifications of Bell polynomials useful in simplifying proofs in

fluctuation theory are given in Section 6.

Finally, Section 7 looks at compounding from the point of view of mixtures

of distributions. It turns out that the regression function of the mixing

variable on the mixture (compound) variable in conjunction with identifiability

results yields characterizations both for discrete and continuous mixtures.

Since the regressions in the discrete case are closely related to Bell-type

polynomials and numbers, the results are given in Appendix B.



2. MULTIVARIATE DISCRETE MODELS GENERATED BY COMPOUNDING

Multivariate discrete models (N,Z) generated by compounding (generalizing)

an integer-valued positive random variable (r.v.) N by a d-variate discrete

random vector (X1 ,... ,Xd ) are investigated via probability generating

functions (p.g.f.) and it is shown that Bell polynomials and related numbers

(e.g. Stirling and C-numbers) play an important role, not only in expressing

probabilities and momentsbut also in explicit representations of the conditional

distribution of N given Z. More specifically, the (compound) distribution of

Z is determined by the representation

= ~l*'N(1)
Z

where are independent observations on which is assumed

independent of the generalized r.v. N.

Several applications lead to such models. For example, N may represent

the number of car accidents in a given locality during certain time period,

X1 the corresponding injury accidents, X2 the fatal accidents, X3 the

injuries and X4 the fatalities. The joint behavior of N and any or all

of the X. requires an (N,Z)-model.

The emergence of Bell partition (d=l) and multipartitional (Section 3)

polynomials in the study of the probabilistic structure of an (Ti,Z)-model is

due to the follwoing basic facts:

1. The p.g.f. G of (N,Z) is given by

G(u,v) = gl(u.g2(v)) (2)

where g, is the p.g.f. of N and g2 the p.g.f. of C; the p.g.f. of

the compound distribution of Z is the compound function gl(g 2(v))=(l,v).



2. p.g.f. of N given Z ( hz(u), &ay, s given by

h (u) = Q )(u,O)/G )(I,O)

where

az OG(uv)G )a8 =u=a, Zo=Z +...+z .

1 V, 1
Vax .zk ,v 4

Some general results, Cacoullos and Papageorgiou 19), concern the

conditional distribution of N given Z=z, when d=l, i.e., when Z is

a scalar r.v. It is shown that (for details we refer to [91):

(i) NIZ=z is a convolution of NIZ=O and another nonnegative r.v. Y.

(ii) If N and X have power series distributions (PSD), then the

conditional distribution NJZ=O is the same distribution of N with a new

parameter b 0e where e=e/f 2(e2);e1 is the parameter for N, and

f (6 ) = I b~ ek is the series function for X1 .

(iii) If N is Poisson and X as in (ii), then the r.v. Y of has a

PSD with series function the exponential polynomial Yz(b 16,2!b26,...,z!b z),

that is, a general combinatorial type distribution, Harper [21].

Fitting some actual data concerning injury accidents (N) and fatal accidents

or fatalities (Z) in eastern Virginia, Leiter and Hamdan [27] used a Poisson-

Bernoulli and a Poisson-Poisson model. Negative binomial-Bernoulli or negative

2_binomial-Poisson models gave more satisfactory results, as judged by the X -

criterion, Cacoullos and Papageorgiou [10]. A Poisson-binomial model [8], was

also fitted to the same accident data.

In addition to the probabilistic aspects of these models, inferential

problems are also examined. Thus, in view of the difficulty in obtaining

explicit solutions of relevant maximum likelihood equations, special ad hoc
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procedures are employed. Such are the methods of "even points", "zero frequencies"

and "ratio of frequencies".

The method of "even points" was used, [10], to estimate the three

parameters (N,P and A) in the NB-P model; in addition to the estimators

and E of E(X)=NP and E(Z), respectively, use is made of the equation

G(I,l)+G(-l,-l) = 2(Pee+P00)

where G(',.) is the p.g.f. of (X,Z) and

Pee = P[X=even, Z=even], P00=P[X=odd, Z=oddl.

This yields a third estimating equation

I+[Q+pe-2']-N = 2(S+S 00 )/n (Q = 1+P)

where See and S0 0 are the observed frequencies of IX=even, Z=evenj and

IX=odd, Z=odd] in a sample of size n, respectively.

The method of "zero frequencies" uses the relative frequency foo in

the (0,0) cell and the proportions f0 and f of zero observations in

the two marginals. The method of"ratios of frequencies" makes use of ratios

such as fo/f 00 ,f./f0  etc. For further details, we refer to [9] and [i0].

3. MULTIPARTITIONAL POLYNOMIALS

Several situations (cf. Section 2) call for the study of a compound

(generalized) vector random variable (r.v.)

y= (1)

where X1 ,X,... are independent observations on the r.v. X with probability
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generating function (p.g.f.) g(v)• say, and N is a nonnegative integer-
11

valued r.v. independent of the Xi. with p.g.f. f(u). Then the compound

(generalized) distribution of has p.g.f. f(g(v)). If the X are

continuous r.v.'s with common moment generating function (m.g.f.) (or

characteristic function) 9(v), then the m.g.f. (or c.f.) of is again a

composite function, f (O(v)). Thus we could consider the usual properties

of , (probability function, moments, etc.) in terms of the functions f and g.

The case of scalar r.v. 's X i led very naturally to the use of Bell

(partition) polynomials Y , Charalambides [131, since Y may be regarded

as the n-th derivative of the composite function A(v)=f(g(v)) in terms of

the derivatives fk of f(.) and gk of f(.), k=1,2,.... Similar

considerations motivated the introduction of bipartitional polynomials Amn

for the study of Y in the bivariate discrete case, Charalambides 1141.
n,

Essentially, the analogous multipartitional polynomials can be used for the

treatment of multivariate distributions of (N, Y) (cf. Cacoullos and Papa-

georgiou [91) since the p.g.f. of (N, Y) is f(u g (v)) as stated in

Section 2.

For distributional purposes, it is convenient to define a bipartitional

polynomial Y in terms of derivatives as follows

Let A(uv)=f(g(uv)) and set

dk ai i am n

fk -dk f~t)It guv'giJ u " v a m v -- g(u~v), Amn-u- v

dt au uav) aui a
Then m'n' m n g. ij

A =Y =Y (f;g0 lglO•. = " k ! 1n n,, (2)
mn mn mn k2k10 k mn i=0 J=O L3.

where the summation extends over all partitions of the bipartite indexes
m n

(Nm), i.e., over all non-negative integers kij satisfying I i I k =M,

n m i=l J=0

J ki=n; k is the number of parts in the partition. The expression on
J=l i=O

the R.H.S. of (2) is the analogue of di Bruno's formula for Bell (partition)



-12- 
T14

polynomials, Riordan [28], and may be usedks an alternative definition of Ymn

(cf. (2) of Section 1).

An immediate consequence of the fact that An=Y is that the

probability function of Y-(Y, Y2 ), with p.g.f. f(g(u,v)), is

PmnP[Yl=m,Y2=n] Ynf;ol,. .iJ' PiJ ...,m'n'pa -  (3)

dtk  ' ,

Moreover, the factorial moments V(mn)=E[(Yl)m(Y2 )nl are

P(m,n)=Ymn(a;0(0,1),$(l,0),..., ,(m,n ))  a O-'(k ) ()

with a(k) and 8 (i,,) denoting the factorial moments of N and (XIX2),

respectively.

As in the case of simple Bell (unipartitional) polynomials, using the

umbral (Blissard) calculus, we may define the polynomials Y of (2) in
mn

terms of their exponential generating function

GoG m n [{~
Y(u,v) Y 2 L ur vn exp[f{G(u,v)-G(oo)}] (5)

m=O n=0

with 3kf, G(u,v) g
k9giJ i. J!

i=0 j=0

This can be used to derive recurrence relations for Y mn Moreover (5)

(see also (4) and (5) of Section 1) implies the following important.

Remark. Bell polynomials can be used equally well both for truncated and

non-truncated versions of discrete compound distributions. Truncation

amounts to the cancellation of certain giJ, corresponding to truncated

values of the r.v.'s.

Bipartitional polynomials can arise in another situation of bivariate

compounding. Let
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Yi=Xil+Xi 2+.. •XiNi  i=1,2, (6)

where' NV, 2  are non-negative integer-valued r.v.'s with Joint p.g.f.

F(-.-), the X are independent with p.g.f.'s gi(') (i=1,2) and the

{X ij are independent of (N,,N2 ). Then the p.g.f. G of (Y1 ,Y2 ) is

easily seen to be the composite function

G(u,v) = F(gl(u),g2(v)).

The special case fk=l (k=0,1,..) in (5) gives the bivariate (bipartitional)

analogues Emn(g 0 1 ,gl 0 ,gll,... ,gmn) of Bell exponential polynomials

(cf. (2) and (3) of Section 1). Thus in the important case of compound

bivariate Poisson distributions, when either N or (N1 ,N2 ) is Poisson,

the p.g.f. of (YI,Y2 ) takes the form

G(u,v) = exp [;,g(u,v)-l}]()

in the former case (1), whereas in the latter case (6), it is of the form

G(u~v)=exp[ [,l9g(u)-1} .,2 {g2 (v,)-1} +) {gl(u)g 2 (v)-l}](I

Two examples of (7) and (8) have been studied by Charalambides and

Papageorgiou [17]: (a) Xi in (1) is a bivariate binomial i.e.

g(uv)=(P00+pl0u+po1v+Plluv)n and (b) the Xij in (6) are independent
ni

binomials, i.e., gi(u)=(Piu+qi) . They provide alternatives to Neyman

type A models used by Holgate [22] to fit certain ecological data.

It should be observed that the exponential polynomials E aremn

associated with compound bivariate distributions in which (Y,Y 2) has a

p.g.f. of the form

G(u,v) = eh(u 'v) (9)

In this situation certain useful relations may be stated.

The bipartitional exponential polynomials Emn(g0 1,g1 0,...) satisfy



the recurrence

n m
Emni I I (m)(n), E 1(0
m,n+l r= r 0 r s r,s+1 n-r+l,n-s , E0 0, (10)

The p.f. P(m,n;h)=P[Y1=m,Y2=n] associated with (9) is given by

(cf (3))
P~m~n~h )= h (0 ,0 )E
Pm,nh=eEm (h01,,hl0,hll,... ,hmn)/m.'n !

where (see (1) of Section 1)

h DDh(u,)Iu=O, vOhrs - sr

As regards the factorial p(m,n;h) of (YI,Y2) we have (cf (4))

)I(m,n;h) = Emn(C0 1,Cl0Cll . ..,c n)

where

Crs Ds r

Using (10) we get the recurrences

P(m,n+l;h) = 1 m P(m-rn-s;h)n+-- --Lr's!

s=0 r=O

n m

j(m,n+l;h) I c (m-rn-s;h).
s=0 r=O r s rs+l -

Marginal and conditional p.f. 's can also be given in terms of Emn. Thus

P [Yl7] = eh (O'' )E .(h l ,...,hm)/m!

where Em is the corresponding unipartitional polynomial and

hr =Druh(u,l.) lu r=l,...,m

and the conditional p.f. of Y2  given Yl=m is given by

( .)E m n(h01,h10 , m
P Y2=n Y1=m = exp h(0,0)-h(0,1) Emn(h'h M

nFEo(h,.. ,hm)L For zore details we refer to [l4].
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4. ASYMPTOTICS OF COMBINATORIAL DISTRIBUTIONS

Relations between Stirling and C-numbers and Bell polynomials, as

well as their role in discrete-distribution theory and occupancy-type

problems have already been made clear in the preceding sections.

Another interesting probabilistic aspect of Stirling and C-numbers

is tied up with the asymptotic normality of the so called combinatorial

distributions. A first result in this direction is that of Harper [21]

showing the asymptotic normality of the combinatorial distribution defined

in terms of Stirling numbers of the second kind, S(m,n), namely, the

distribution of

S (m,n)
mn = B n=0,...,m, m=0,1,... (1)

m
where Bm= I S(m,n) is the Bell number. Another case considered by

n=O

Charalambides.1121, is when S(m,n) is replaced by the C-number

C(m,n,s), Cacoullos & Charalambides [6]. In a general combinatorial

distribution, the S(m,n) are replaced by A(m,n) which are assumed

to satisfy the "generalized Pascal triangle":

A(m+l,n)=g(m,n)A(m,n)+h(m,n)A(m,n-l) (2)

where g and h are positive; also the r.h.s of (1) is multiplied

by An , i.e.,the general combinatorial distribution is defined by
m

Pxn] = n , A () I A(m,n)An • (3)Am() n=O

The question raised here, Kyriakousis [26], is under what conditions

on g(m,n) and h(m,n) the asymptotic normality (as m-) of the

general combinatorial distribution obtains.

In particular, the problem of asymptotic normality is studied

through the asymptotic behavior of the polynomials
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Am( ) = (A A(m,n),
n

n=O

It is assumed that the AM(X) are Bell exponential polynomials, defined

by their exponential generating function

CO m
I AX) -- exp{A[f(z)-f(O)]}, f(z)= n
mO n>0O

For example, if f(z)=ez, then Am(1)=Bm , the so-called Bell number

and A(m,n)=S(m,n); if f(z)=(l+z) s , s>0, then A(m,n)=C(m,n,s), the

C-numbers. Furthermore, asymptotic expressions for ratios Am+k ()/Am(A )

are obtained under certain conditions on g. These ratios determine the

asymptotic behavior of the variance (k=2) and the mean (k=l) of the

X mn Then applying the normal convergence criterion to the sequence

{X n shows the asymptotic normality of the corresponding combinatorial
mn

distribution. Also, a useful result in this direction is that of Haigh 120],

which requires to show that the polynomial p.g.f. of X has real roots.m

Some general conditions on g(m,n) and h(m,n) under which the

corresponding combinatorial distributions converge to the normal (as m-)

are given in Kyriakousis [263. They imply, as special cases, the asymptotic

normality of the combinatorial distributions defined by

'a) the signless (absolute) Stirling numbers of the first kind Is(m,n)I,

which satisfy the recurrence (cf. Appendix A)

Is(m+l,n) l=nl s(m,n)I+ Is(m,n-l) l,

(b) the binomial coefficients (m) so that by taking X=p/q in (3) one

obtains the well-known asymptotic normality of the binomial distribution

(c) the Eulerian numbers

E(m+l,n)=n E(m,n)+(m-n+2)E(m,n-l)

hnd the generalized Eulerian numbers, Dwyer [19j,Ea(m,n), a>O integer, withaneewt
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recurrence

Ea(m+l,n)=(n+a)Ea(m,n)+(m-n+2-a)Ea(m,n)1

(d) the Stirling numbers S(m,n) of the second kind (a1(m)=b0 (m)=l,

a(m)=0), first shown by Harper 1211 for X=l; also the C-numbers, C(m,n,s),

and the signless numbers IC(m,n,-s)l, 112] (see also Appendix A). Finally,

the non-central Stirling numbers of the second kind Sa(m,n), studied by

Koutras 1251, with the recurrence (see Section 5 )

S a(m+l,n) = (n-a)S(m,n)+Sa(m,n-l),

for a<O also converge to normality

5. NON-CENTRAL STIRLING NUMBERS - MULTIPARAMETER STIRLING AND V

C-NUMBERS.

The Stirling numbers of th first kind s(nk) and the second kind

S(n,k) are usually defined F, the coefficients in the expansion of the

factorial (x) in powers of x and vice versa (see also Appendix A).n

The non-central ones are their analogues when xk  is replaced by (x-c)k

for some real c. This leads to an equivalent definition in terms of

exponential generating functions (egf). Thus the egf for the non-central

(around c) numbers of the first kind sc (n,k) is found to be

t~n

fk~) :[ S(n,k) t. (l+t)clkl-. log(l+t)lk ;fk(t) = t1
n=k

similarly the egf h(') of Sc(n,k) is given by

hk(t) = e ct (e t-) k (2)

These expressions can be used to obtain relations between non-

central and central (c=O) Stirling numbers. Moreover, they are con-
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venient for the definition of generalized non-central Stirling numbers

s cs(n,k,r) and Sc(n,kr) , by subtracting the first r terms in the

expansions of log (l+t) and et. respectively.

A.pplications in probability and occupancy problems. Considering

power series distributions, (.-t) c , c<O, is the series function of a negative

binomial and -log(l-t) the series function of a logarithmic series

distribution; it can be concluded from (1) that the "signiless" non-

central numbers of the first kind, isc(n,k)I = (-1)n-ks c(n,k) are

associated with the convolution of a negative binomial and a k-fold

convolution of a logarithmic series distribution; similarly the generalized

sc(n,k,r) correspond to left-truncated logarithmic distributions.

Another use in probability theory of sc(n,c) is in expressing the

factorial moments xn of a random variable X in terms of its moments

Uk,c about the point e, that is,

n
= s c(nkh

k=O

Thus taking c=j=E(X), in is expressed in terms of the central moments

P Conversely, the Sc(n,k) can be used to express v n,c in terms of

From the point of view of distribution theory, the Sc(n,k) are

associated with convolutions of usual and zero-truncated Poisson distributions.

An occupancy-type interpretation of Sc(n,k) is the following

n distringuishable balls can be distributed into a set of k identical

cells and J distinguishable boxes so that every cell is occupied in

S_ (n,k) ways. Similarly for S (n,k,r).

For additional results and details we refer to Koutras 125].

Multiparameter Stirling and C-numbers.

Another extension of the usual Stirling and C-numbers in a different

direction Is motivated by the estintion problems when several independent
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samples are available from the sam parent distribution but the truncation

points differ from sample to sample. The relevant details of applications

and occupancy-type interpretations are given in Appendix A.

6. BELL POLYNOMIALS IN FLUCTUATION THEORY

Bell (exponential) polynomials have been used in the study of generalized

(compound) discrete distributions, due to their interpretation as derivatives

of composite functions (Sections 1 through 4). Another important area of

probability theory where such polynomials provide a powerful tool is the so

called fluctuation theory as developed mainly by E.S. Andersen and W. Feller.

Consider a generalized random walk IS ), where Sk=X + ' '.+ X  k=1,2,...

(S0O) and the X. are i.i.d. r.v.'s. Using a classical result of
1

Touchard 132 Ion the number of permutations of n elements with specified

numbers of cycles possessing certain properties, in conjunction with Spitzer's

combinatorial lemma, yields a simple combinatorial proof of the basic result:

Pn P(S 0,.Sn> = .. Cn(a "

q E PIS<0,... Sn<O Cn( , ,l-an)

with ak=P[Sk>O, k=l,2,...,n (nl,2,...) and Cn denoting the cycle

indicator function , Riordan [28], related to Bell polynomials Yn (tl,...,tn)

by

Cn(tl$...,t n ) = Yn(tlqt2,2!t 3 ,..., (n-l)!tn).

Further simplifications are obtained by introducing the polynomials, (16',

k,n (x'Y) 5C k,n N.19 .. %xn sy l s" .. " yn )= k ) k(X)en-k(Y) "

Exploiting certain properties of Ck,n(x,y), one can show the basic result

P[N k] - (k%- Cl-a,".l-a
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and hence, e.g., the recurrence

n-k
PINn=k n-l (l-ar) P[N = k]

r=0

Nn denoting the number of positive partial sums Sk, k=l,...,n.

Also simplified proofs can be obtained of some results concerning

symmetrically dependent (exhangeable) r.v.'s after proving a result

along the lines of Spitzer's combinatorial lemma. For details we

refer to [16].

7. CHARACTERIZATIONS OF COMPOUND DISTRIBUTIONS BY REGRESSION

AND BELL-TYPE POLYNOMIALS AND NUMBERS.

So far Bell-type polynomials were discussed in relation to the

distribution of a generalized (compound) discrete random variable (rv);

also in generalized random walks (fluctuation theory). In the latter

case, it was indicated how Bell polynomials can be extended to provide

simple proofs for some known basic results. In the former case, the

probability generating function of the generalized rv Y=XvZ,

y = Z+Z 2+...+zx, Wi

can be expressed in terms of Bell-type polynomials. For example,

Stirling type polynomials (with coefficients Stirling numbers of the

second kind) appear whenever the generalizing variable Z is a Poisson

and C-type polynomials (with coefficients C-numbers) whenever the

Z-variable is either a binomial or a negative binomial, [9].

Bell-type polynomials can also be used to express the regression

(posterior mean) m(y) = EjXIY=y ] of a compound mixing r.v. X on the

mixture variable Y, with (absolute) probability function (p.f.)

p(y) = p(yix) f(x) (2)
x
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(p(.ix) denoting the conditional p.f. of Y(X) \given X=x and f(')

the prior p.f. of X). This came up in specifib applications of the

following general characterization result.

Let p(ylx) in (2) be a binomial, negative binomial or Poisson

for every x=1,2,.... Then m(y) characterizes both p(') and f(').

(The details are given in Appendix B, exhibiting also several examples

of Bell-type polynomials and numbers).

In fact, m(O) alone is sufficient to characterize p(-) and f(.)

provided p(. ix) is an x-fold convolution of the same r.v. Z for every

s = PIZ=0>0, Cacoullos [5]. Clearly, by varying arbitrarily the X-

distribution, an infinite variety of bivariate discrete distributions

can be characterized in this fashion. The result is brsed on the fact

that the p.g.f. h of X satisfies the differential equation

m(O) = m(O;s) = sh'(s)/h(s) O<s<l.

Hence f(') is determined and by (2) also p(').

Finally, characterizations in terms of m(y) are obtained for

continuous analogues of (2), when X and Y are continuous. Here the

role of X is played by a continuous parameter 8, which is itself a

r.v. with some prior density f('). However, since these results fall

rather outside the main scope of this research, no further details are

given here.
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MULTIPARAMETER STIRLING AND C-NUMBERS: RECURRENCES AND APPLICATIONS*

BY
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ABSTRACT

Nu]tiparameter Stirling and C-numbers are defined via exponential F
Cenerating functions and basic recurrence relations are given; &lso, some

combinatorial and occupancy type interpretations are provided.

Recurrence relations are derived for certain ratios of simple,

Ceneralized and iultiparwrieter Stirling and C-numbers. Trnese recurrences

are useful in the comp~utation of minimu variance unt,'azed estimates (mvue)

for classical discrete distributions truncated on the left. Asymptotic

relations between these numbers are also inclu4ed.

Ley words: multipar:-jeter Stirling and C-numbers, exIonential generating

functions, recurrence relations, mvue, left truucation, power series distributions.
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1. INTRODUCTION

The Stirling numbers of the first and second kind aretess known among

statisticians than among people dealing with combinatorics or finite differences.

Only recently have they made their appearance in distribution theory and statistics.

They emerge in the distribution of a sum of zero-truncated classical discrete

distributions: those of the second kind, S(m,n), in the case of a Poisson distributior.

truncated away from zero, Tate and Goen (1958), Cacoullos (1961);the signless

(absolutc-value) Stirling numbers of the first kind, Is(r,n)l, in the logarithnic

series distribution, Patil (2963). In general, such distributional problems are

essential in the construction of minimum variance unbiased estimators (mvue) for

parametric functions of a left-truncated power series distribution (PSD).

Analogous considerations for binomial and negative binomial distributions

truncated away from zero motivated the introduction of a new kind of numbers, called

C-numbers by Cacou]los and Charalambides (1975). These three-parameter C-numbers,

C(m,n,k), were further studied by Charalambides (1977), who gave the representation
m

C(m,n,k) = I kr s(m,r) S(r,n) in terms of Stirling numbers of the first kind,
r=n

s(m,r), and the second kind S(r,n). Interestingly enough, this representation in

a disEuised form was, in effect, used by Shumway and Gurland (1960) to tabulate

C-numbers, involved in the calculation of Poisson-binomial probabilities.

The so-called generalized Stirling and C-numbers emerged as a natural extension

of the corresponding simple ones in the study of the mvue problem for a PSD truncated

on the left at an arbitrary (known or unknown) point Charala nides (l97hb). It rhould

be mentioned that, in particular, the generalized Stir3ing numbers of the second

kind were independently rediscovered and tabulated by Sobel et. a]. (1977), in

coinction with the Incomplete Type I - Dirichlet interral.

The r0lu] iprameor St irlinc and C-nunbers are the anailoru,'s of FI r

' r] in, nnd C-nuriberr in a multi-si.ip1 e situation w],ere thc undturl £ -j i sr Y r

ruojtiplv trinc:ited on the left , Cacou]lor (1975), (3977).
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Recurrence relations for ratios of Stirling and C-numbers are necessary *

because the mvue of certain parametric functions of left-truncated logarithmic

series, Poisson, binomial and negative binomial distributions are expressed in

terms of such ratios. These recurrences bypass the computational difficulties

which come from the fact that the numbers themselves (but not the ratios of interest)

grow very fast with increasing arguments. Recurrences for ratios of simple Stirling

numbers of the second kind were developed by Tierg (2975).

The main purpose of this paper is to provide recurrences for certain ratios

of multiparameter Stirling and C-numners, thus unifying several special results,

includi27 those of Berg (1975). For the development of the topic, we found the

use of exponrntial generating functions (egf) most appropriate, both for introducing

the numbers "Ohemselves and deriving recurrences as well. Without claiming com.peteness,

we incluied certain basic recurrences. . &L'-rrvea elsewhere, Cacuu2lcr f3975) (1977),

it is emlphasisEd here, once more,that in the study of PSD's the egf approach is the

one suggested by the probability function itself in its truncated form. Also, we

found it approfriate to include certain asymptotic relations between Stirling and

C-numbers, which reflect corresponding relations between binomial and Poisson

distributions or logarithmic series and negative binomial distributions.

A typical result, which involves ratios considered here, is the following.

Let xi, ., n be a random sample from a left-truncated one-parameter PSD

distribution with p.f.
a. (x)Oex

p(x;e) a We, x=r.,r.+1,... (.1)
f (e,r) 2

where f (e,ri) = [ a.(x)e, i=l,...,k. If the truncation point
x=r.

r=(rl,...,rk) i .known and ai(x)>O for every x>ri, i=2,...,k, then,

Cacoullos (1977), for every J=1,2,..., e) is eslimable and its (uniqu) mvue,

ba:t-;d on a] k independent tramples {x ij), is given by

" .& .. ........ .. . . . .. , . ... .. .



0 (Wn 3.2)j ~l~n

where n=(n, .. .n ), r=(r,,...,rk), W~ =n(i-2) ... (z-j+l) and

l'~ 3 1kJ l

where thc .umnr:-tion extends over all ordered N-tuples (I =n k.

1 11 --r"=. In the cases of intere.3t (Poisson,binoril, etc),
i=2 J-2

the nrb eri; (injt-CtcrF) a(o;,n,r) turn out to be Stirling or C-Yaurlhers, dcejeriding

on the series function f.i in (2.1), which at the samre time, s-uCgests the

corresponding egf of these numbers.

2. MUL'IIPARAMETER STIRLING NUBERS OF THE FIRST RIND: DEFINITION-

GENERALPROPERTIES.

Let r 1... .r k and n1 ,-. .,n k be non-niegative integers (k)>1). The

rnu~tipara:-eter Stirlingr nur!ibers of the first kind with parameterz r=(r,,r 2 9.r. k

and k,,(n,,n2 ,.. .,nk,), to be denoted by s(=;n,r), can be defined (cf. Cacoullos,1975')

by the egf

C (t~r) s(rn;n,r) tin/r! 1Tt og(l.t)- 1(-1 )i jn (2.1)

where we set mrB r n +" .+r~n,_.

The special case k1l, r I=r, na=n yields the f-cijeralized F'1irlinr- nu:Q'-rs of

the first kind, s(xn;n,r), defined by Charelamlhides (297L&a),Vhile 1, r~l

gives the simple Stirling, numbers of the first kind, s(rr.,n). Fronoritionr

2.3-'.3) unm-~rize biisic properties and rec'u-ruees for r(Tr;nj,r) hrld

fac) itat( tlair computation.

Remark 2.1 . In tesqlin order t.o avoid unnv e!1.bry cui-l i rftion: di. ~

r(e(urrc icc: , w( zli, r if 11,at all n i>C,; s-ome n,., say v, Eire nero, 11>Cn tl.(3 -htc

'. (~'~h'5 '.k-v aind 1.j( rjcert-.jrV nidi fi ew~ionr arc oll-viour.
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Proposition 2.1. The multiparameter Stirline numbers of

the first kind s(m;n,r) have the following representation

n-N M!ik n i__~nr = (-I)"-  ,' - E 3 T i (2.2)
nn XiI "' k' m i:l j~l xij

where N = nI ...+nk and the summation extends over all ordered N-tuples

of integers xij satisfying the relations n.

>r1. i ... k and xij m

Proof. We have

rk.-

Forming the Cauchy product of series, we find, in virtue of (2.1),

e(t',r) 'I: n - (t,r i)) t- Y 2.
"m~r n m i=1 :~ Xij

where Las the same meaning as above;

Co,.;arirnE (2.4) with (2.1) we get (2.2).

To obtain recurrence relations, we make use of the easily verified

difference-differential equation, satisfied by the egf g n(t,r) in (2.1).

raaely,
d r.-I r.-1 ( r)(2.5)

(ltt) - gn (t; r )  L-(i t a n-e. -

dt nil--a

where e. (0,......,O), i.e., a k-component vector with zero

comlponents except the i-th component which is equal to one.

Proposition 2.2.: (n,n) - wise relations: The numbers s(m,n,r) satisfy the

recurrence relation
k r.-l

s(mil:n,r)tm s(m;n,r) (-) (m)r .-  -- 2.6)

with initial conditions

s(O;O,r) = 1, s(o;n,r) = 0 whenever :r n 0, s(m;n,r) = 0 if m < r'n.

Froof. Equation (2.5) in virtue of (2.1) can be written as
t _- •,r . - a

(1st) s(r.;rj,r) (,2.-7., : (_3). s(m;)er) )

n,7r n (I, =3 n.:rn-r. r'!



Equatihg the coefficients of th/m!' In (2.7) yiclds (2.6). hote 1hat

equation (2.6) for k = 1, r I ives the well-known recurrence for the

simple StirlinE numbers of the first kind

s(rn*l,n) = s(m,n-2) - m s(m,n). (2.8)

Prcposition 2.3. (n;n,r) - wise relations: The numbers s(m;Lir) satisfy
- l)Jr (m )Jr4

s(m;nr-te s(m-jr;n-e ,r), i:l,...k (2.9)

Proof. We have, using also (2.3)

r. n n.

(t;re.) = y r ) t(-l) L t_ _ trj) (2.10)£n t  r. j=, n-j! -r

S Pi
and using the binomial expansion

r. • n = £ tn Jr i 2.
r. t )  , n-j (  tr.:r )+-), -=o 5 (n.-j). (t,ri)(-I) rD.  (2.11)

we car. wr'te (2.10) as
n%. "IT, j r.

2 2
(-i)r r * r

L(r.*;n,r~e.)-- t Mnj r t . (2.22)

r..r'~n. -2 =0 j! r r:zr'n,-jri

Hence, equatinf the coefficients of tIT/m! we obtain (2.9).

Signless rTaltipara-wter Stirling nunrbers.Fro4 the recurrence reiation (2.0£),

it fo2owF that the numbers s(n;n,r) are integers. Eoreover frorr. the

representation in (2.2), we conclude that s(m;n,r) is an integer with sign

(-1)' - , where N = nIe...+n k . Therefore if we multiply (2.6) by (-I)

we obtain
k= ' -- ---l Is(r-r *1 ;n-e ',E) l (2.23)

we call Is(r,;n,r)I the signless (positive) multiparareter (k-parameter)

StirlinE nuber of the first kind. We will show

Projpositicri 2.4. The erf of Is(m,n,r) I is Eiven by

m ~r.-2 j n.

.( ;r) , s(tr.ln,r)l - =.: s [og(2--)- j: -- (2.34)
I-o - r , mI io3 5 a e

Vxoof. di~th ~fferenCE' equation (2.23) it is ca~ily verifiud that *h(
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egf £E(t;r) satisfies the difference-differentia] equation

k r C-I
( h-t)! hn(tr ) ) t " (2.15)

dt n-net)- i=1 --e -

which in turn yields (2.14).

Alternatively, (2.24) leads to the representation of Is(m;n,r)I as

obtained from (2.2).

3. RATIOS OF MULTIPARAMETER STIRLING NUMBERS OF THE FIRST KIND.

We define, as ratio of nu2tiparanmeter Stirling numbers of the first

kind with respect to areument m, the function

R1(m;n,r) s= m(3.1)

Patior with respect to the arguments ni,ri, i 2,...,k can also

be defined. The main reason for considering ratios with respect to m

is seen from (1.1), which, actually, involves reciprocals of RI, when

we are concerned with the parameter of a logarithmic series distribution.

Proposition 3.1. A recurrence relation for the ratio R (r;n,r),

independent of the ultiparameter Stirling numbers of the first kind,

is given by

S(m) r -1 r jn j r -3r'n

(r - - P R(m-rj*2-i1n-ejr)
R= - " (3.2)

T ,(,,,.
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for n P; I and it r 'n , with 1),e boundary conditions

R1(rn,1,r) -I (3.3)

and k n. } n

-- -j- - i --I r,.- k i  (3.4)
rj (rj+3) n r.

i=1

iij
Proof. Using equation (3.1). it can be easily seen that

R I R1(n-i;n'r) s(r'n,nr) (3.5)

But equation (2.2), for m r'n, i. : rn2 :... : u , ri, becomes. j2 in i  '
(r'n)'

s(r'n,n,r) ( -)r ' - -  k - (3.)
- - kIk n."Nn,  r.

Consequently, equation (3.S) becomes

nT-r 'n

r 'n-N (T R(m-i;r,,r)
- - (r'n)! i=1 I

s(..;n,r) - k n. (3.7)
Ak nn. I

- n.: -i r.X

From equations (2.6) and (3.1) we have
k r.-1

---M) ) r.-_ s (m-r+ ;n-

s(m,;n,r)

and substituting for s(rn.-r.41,n-e.,r) and s(m,n,r) from (3.7) yields (3.2).

By definition

s(r'n+a,n,r)
l( ' 'n" - s(r'n-,n,r )  '(3.9)

using equation (2.2) for m = r'n+l m* r'i2 " n 1i,l-: ,i +1:-"

:n. = r., r 1  r. for I a,...,n., and equation (3.6), the

required formula (3.4) is easily obtained.

The special case k I yields
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Proposition 3.2. A recurrence relation for the ratio R (m,n,r), in-

dependent of the generalized Stirling numbers of the first kind, is given by

rn (m) mil-rn
(Cn) r = R (m-ril-i,n-l.r)

R1 (mn,r)*m = r= 1 (3.10)m-rn

TTI R (m-in'r)

i~1

for n I and m > rn, with

R (m,l,r) = -r, (3.11)

R(rnn,r) - rn(rnl) (312)

Also for k 1, r = I we obtain, ,

Proposition 3.3. A recurrence relation for the ratio R (m,n), independent

of the simple Stirling numbers of the first kind, is given by

m * -n

J R (m-i ,n-1)

R (m,n)im = i=1-- (3.13)m-nTT R (m-in)

for n > i and m > n, with

R (m,]) = -m (3.14)

R (n,n) = - n(n+l)/2 (3.a5)

Proposition 3.4. An alternative recurrence relation for the ratio R1 (ir,n,r)

is given by

m R1 (m-aln'r)im-1] R1(m-r'n-i'r)
Ra(m'nr)m = m-r+i F I(m-l,n,r) (3.Th)

for n > I and m > rn. R (ml,r) and R (rn,n,r) are given by (3.11) and

(3.12). respectively.

Proof. Using equation (2.6) with k = I, we have
1-~- (in)r s(m,-ril,n-1,r)

R (m,n,r)+m = (3.17)
1 -- s(i.,n~r)

from which equation (3.36) can be easily derived.

Applying Proposition 3.4 with r=l gives

Proposition 3.5. An alternative recurrence relation for the ratio R (7,n)

is Liven by [R(m-In)m-1] R (m-2,n-1)

1i mn)sr ----- R, m n. (3. IF)
R (ni-2,n)

... . . .. .. Ililill H 'Il -- II ] .. . l 1
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4. MULT]PARAUUETER STIRLING NUMIBERS OF T'HE SECOND KIND

The mulliparameter Stirling numbers of the second kind S(rm;,r)

defined by their egf
U-. tm k r j * ti' *

n(t:r) ~ S(m;nr) - = : (4.1)

Taking k=l,rl=r gives the Ceneralized Stirling" nuL"4ers of the !5econd kind,S(=,n,r"

Charalambides (]97L), taking k-l, r=2 defines the cJime Stirling numbers

S(m,n). The following properties of S(r,n,r) can easily be ertablished (Cf.

Seiin2).

a) They have the representation
n

n n (4.2)
S~mnn-r n n~ Xl-k- ml*' k i=l j=2 iJ

where the summation extends over all ordered li-tuples (1;=n,.--+r k ) of

integers xij satisfying kn.
I

X.>r. i 1,...,k and - x.. = M.

b) They satisfy the following recurrence relations

S(n tl;,r) = N S(m;n,r) - (m ) S(-r,*l;n-e.,r) (4.3)

n. C(m).

S(m;n ,rte.) = /_j (-.) . S "r;n-je,r ) (4.4)
j=D )(r

with initial conditions

S(O;O,r) = 1, S(O;n,r) = 0 whenever r. nI>O and S(m.;nr)=0 if m<r'n.(4.5)

These follow from the difference-differential equation
k r.-l

d fn(t;r) = N f (,r) fn-e. (t;r) 3' /(r-l). (4.6)

Jt can be easily seen that the representation (4.2) pr, 'des the following

ccl-,inatoria3 interpretation in terms of occupancy riu."2ers.

Proposition 4.1. The number of ways of placing m distinguishLable balls inte

] n1y...4n. cells so that each cell of the i-th group of n. cells ccriains

at least r. balls for i = 2,...,k is equal to n '' .. rI'S(r.;n,r) If the



- All -

N cells are distinguishable. and is equal to S(m;n,r) if only cells

belonLing to different groups are distinguishable (and cells in the same

Croup are alike).

It is easfly concluded from Proposition 4.1, or from (4.3) - (4.5),

that the numbers S(m;n,r) are non-negative integers.

5. RATIOS OF IMULTIPARAMETER STIRLING NUXILERS OF THE SECOND KIND.

We define, as ratio of nultiparameter S1irling nu.bers of the second

kind with respect to argument ii, the function

S (rrj.1 ;n,r)
R 2 (mn,r) =-U - (5.1)

Working as for Proposition 3.1,we oblain

Proposition 5.1. A recurrence relation for theratic h2 (ninr), ir.: r~t

of the multipara:-eter Stirling numrers of the second kind, is given byk (r --) r, .IrI
V -__-(_'n . R (- +1-i ,.--e

R (m;n,r)-N - .. . _ n (5.2)
2 r-iri

T R2 (r-i,n,r)

for n > I and m > r'n with

R 2(m, Ir) = k (5.3)

and
k n.k n2( ' ,r)-(r'n-+ ) nl (ri ) . .. .
Sr r-1 k n. (5. )C r.!) "Cr 4a)! n (r.!) 2

j=1

The special case k I yiclds

Piolosition 5.2. A rccur rmcL relation for the ratio R 2(r,n,r)
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indepeneent of the generalized Stir2ing Lubcr of the second irU' d, is

given by
n r m+l-rn

n(r-]) [ R (nr-rtl--in-l r)
R2(m,n,r)-n = T.5

2 in-rn2T R2(rn-i ,n,r)

for n > I and m > rn , with

R2(Tn,l,r) 1 (5.6)

and

R (rn,n,r) n(rn l)/(rel) . (7)

Also for k = ', r h I we obtain

Proposition 5.3. A recurrence relation for the ratio R2 (m,n), inde-ec.lmt

of the usual Stirling numbers of the second kind, is given by

TTR (r-~-1)R21=1 2(r. i 'n
R2 (r.,n)-n = IT_ -- (. 8)

i =1

for n > a and m >n, with

R2 (rr,l) 2 (5.9)

and

R Xn,n) n(n+l)/2 (5.10)

Proposition 5.4. An altenative recurrence relation for the ratio R2 (.,n,r)

is given by ER2 (m-anr)-nJ R2 (m-rn-lr)

2( 'n' - n- -r+l R-(r-l,n,r)

for n > I and m > rn.

Applying Proposition 5.4 with r = I gives

Prol-osition 5.5. An alternative recurrence relation for the ratic R (r.,n),

is given by

2 ( r,n)-ri . ........22) ( .12 )
22 (r.-1,n)

for n > I and IT, > n.

The last relation w~as also derived by B~erg()U)
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The multiparareCter C-nuTr 'ers, C(iT;n,s,r). are defin-d by their egf

lW(t;s,r C(r.;r,s r) -i= T 1t 3i (6.1

where the s. - 0 i =1,...,k are any real numbers.

Ta ,iin k = I givL-5 the Eerieralized C-n-iul~ers, Charalam"bAdes 7X)

and k =1, rl= 3 defines the simple C-nurmbers, Cacoullos arid Charalar71iides

T fc2owiriF properties of C(r,n-,s ,r) are easily verified.

a) They have the representation.

C(r;n,s,r) - -. r (6.2)

w-.E-re -iie sY,7 vaton exteids over all ordcred 1:-tuples (i;=r +.- .. nQ4D of,

>:.r i l..k and FY..M.

h) Tey sasythe fo-'2owl-ng recurrence relations,

C(m; s,)=(s 'Tn-mr.) C(rr.;n ,s ,r) + s~ (r'r--(si-r. 1 n.4l i- - (r.3)

n (Cm)jr s

C (r -,, s r-te ) j! ri (-l)-j i .- (6.4)
j=0

w~th iniltia2 conditions

C(C,;C,s,r) = -, C(mr.;n,,s,r) =0 w'he, r. -c r'n. They are obtained' fro:-, the

c -ffrec-d-ffererIrC-I-a: equationl

d k<
(lit Qr(ts-) ((t.s-r t (Pr- (t~s r). (6. 5)j

The rc-presenlaiion, (6.2) leads tc -the fo2 owing interpreiation of the

C~ ;,,,T)-v~2 rsin the f2*wr:of ccupon-col~ecting prohlens.

Ccnridur an urn) c-ontaining 3< groups (sets) of distinfuislable IYals;

th.- :I cnt Of S.n1. L.al and is divided into equal subfroups

Eru ) of s. b~al s tach Learing the num)bers 3,...n; roreover, suppose

that thc La~llr. of thec k< Frcvps are distinruishcd by diffcr-ent rc'Thurs so
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that .ach L&l2 in the uru is dis iiuished by its colour and nu:bcr. Now it

is easily seen froom (G.2) that

Proposition 6.1. The nur,-mer of ways of selectling r balls out of an urn
k

with s'n = s.n. distinguishable balls, divided into k groups by colour
-i=jl

and number as above into n. subsets of size s. within the i-th subgroup, so

that each number l,...,n i of the i-tb, subgroup (colour) appears at least r.

times is equal to

- .' C(m;nsr). (6.6)

Here it wds assumed th&t s. is a positive inieger. If s. is a negativea a

it.leger, say, s. = -s. , thenI a

D. n. n
-- -t T=~j -i 1  V .X (6.7)

IT. ii TT Fx. i T (-,aXj i
a=l j=l 1=2 ij -=l j=l ij

a!nd from (6.2) it cam be concluded tlal the sign of C(T.,n,s,r) is the sn1e

as (-!)T. Furt).crimore, we may deduce

Proposjton 6.2. The number of ways of distributing m (m r'n) non-

distinguishable balls into s*' n cells, divided into k Erzups of cells with

s.r. cells in the i-th group and n. subgEroups each of -. cells in the i-it,

group, so that each subgroup of the i-th group contains at least r. halls is

equal to

ni.:..... (k .)

As an indication of the applicability of the rultiparameter C-iu.llers

in occupancy problems, we refer to a problem posed by Scbel et. a].(3 s/'j),j..2.

Sijgness rrultiparaneter C-nuraers. From the Yasic recurrence relation (6.3)

or from. the last iwo propositions, we conclude that

(i) for s. > 0 integer, the numbers C(m;n,s,r) are non-negative integers; thev

ar( pcslive for r'n < jT. c s'n; otherwise sero.

(ii) for t.. < 0 integer, the i;u-.bers C(r-.;n,s,r) ar, m fters -VwITf, the sign

of ( m
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Thus, as ih. the case of the Stirling nu."xbers of the f irst kinl, Riordan ( i.' -),

the positive numbers

!C(m~n,-s*,1)J = F-l) m c(TT;2,-s.r') (6.9)

will be called signIess irultiparameter C-numbers.

It can be easily verified that

Proposition 6.3. The egf of the signless multiparameter C-numbers IC(,;n,-sr)J,

s. > 0 i =  ,...,k is Liven bya r-

w*(t ;-s ,r) =~ hij I(2a-)) a (-) J (6.20)

Rc3nark. It should be observed that this is exactly the egf required for the

treatment of the rvue problem in the negative binomial case wlen the prob-

ability funcion of the i-th sample is

y a a ) e J(a-e) Si (-1 )J ( e 3(1-e)si

(6.22)

g(6,r.) = (I-e) - (-I) j  = ,. ,k.(12)

7. RATIOS OF MULTIPARAMETER C-NUMBERS.

We define, as ratio of mu2tiparameter C-numbers with respect to arru7.ent

m, the function
C(m+l ;n,sr)

R (IT,;n'S r = -ii * (7.2)
3(-' C(m;n,s,r)

Proposition 7.1. A recurrence relation for the ratio R (r n,s,r), irdejpe-dent

of the mu]tiparameter C-numbers, is given by

k ("r (s.) ".n. I- r'n

17 R (r-r n r-i,n-e,( r 'n(r r s j 2 ' 3 j- j ! ,-

. . . . . -r '

for n > I aind n > r'nj, with

R.n,,~)= :'r.(7.3)

-' (r'n+2) k ) ] kL(r'n;n':s'r) =- ... ?- ' "  "I n~= r,(71n)
Ml rs) n

ni,
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Proposition 7.2. A recurrence relation for the ratio 3(Tr,n .5r)

independent of the generalized C-numbers (case k=]), is given by

Trn_ ( m+1-rn
1r-1) r Tn R m-r+1-in-ls0r)

Cmn) r(s)
R (m,n,s,r)n+m-sn= -rn.5)
3 mr

TT R3 (rM-i,n,s,r)i 1

for n > I and m > rn, with

R3(m,l,s,r) =s-m (7.6)

R3 (rn,n,s,r) n(rn+l)(s-r)/(r+l) (7.7)

Proposistion 7.3. A recurrence relation for the ratio R(3(r,n,s) ,

independent of the usual C-nurbers (case r=I), is given by
rr+I-n

R3(TTns)+-sn =%. 'n- (

TT R3 ( r-i,n,s)
il

for n > I and m > n, with

R3(rn,],s) = s-m (7.9)

and

R3(n,n,s) = (s-I)n(nl)/2 . (7.10)

Proposition 7.4. An alternative recurrence relation for the ratio

R 3(m,n,s,r), is given by
m [R 3(m- 1 n's 'r) +mT-sn-1] R 3 (r,-rn n- Is 'r)

R (Tr,,n,s,r)-m-sn = r 3J(.1
3 ( ,-rl R (m--,n,s,r)

3
for n l I and m rn.

Propositi 7.5. An alternative recurrence relation for the ratio

R 3(r,n,s), is given by

R 3 ( 1 , , , ) . s = ( 7 .2 2 )
R (r.-I],n,s)

3
for n> I and r >n.
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8. RELATIONS BETWEEN THE STIRLING AND C-NUMBERS.

It was observed in Cacoullos and Charalambides (aq-f5). that

im s-m C(,,n,s) = S(mn) (8.1)

that is, the C-numbers can be approximated by the Stirling numbers of the

second kind for large s, a fact which reflects the corresponding well known

convergence of the binomial to the Poisson (s -. , p - 0 , ice.8 = p/q - 0

and hence sp or se converges to the Poisson parameter X ). The above

property extends to the case of multiparameter Stirling numbers of the second

kind and multiparameter C-numbers, namely,

S m C(m,;n,s,r) = S(r.;nr), i = 1,...,k. (B.2)

This can easily be verified by using the corresponding representation

(4.2) and (6.2) of these numbers and noting that

lim s ( s 1/k: (8.3)
S -+
A relation between the signless multiparameter Stirling numbers of the

first ',ind and the iultiparameter C-numbers reflects the limiting relation

between the negative binomial and the logarithmic series distributions:

ir. s. jC(...;n,-s,r)j = ls(Tr,;n,r)l , N = n +...*nk. (8.4)

aThis can be seen, eg, by showing that the egf of the s, jC(m,n,-s,r)J-

numbers converges to the egf of the !s(m;n,r)I-znumbers, that is,

s. u ~ -I, N1_ p ' lt) -  (-I) j ( T = . log(l-t)-.

s. i= Ia = j=l

For this note that

i _ ( -s t j  t ]= - .( B 6

s S
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APPENDIX B

CHARACTERIZATI S OF DISCRETE DISTRIBUTIONS BY A CONDITIONAL

DISTRIBUTION AND A REGRESSION FUNCTIONP

T. Cacoullos and H. Papageorgiou

Statistical Unit, University of Athens

Key Words and Phrases: Characterizations,discrete mixtures, identifiability,

regression. I -

Abstract

The bivariate distribution of (X,Y), where X and Y are non-negative

integer-valued random variables, is characterized by the conditional distribution

of Y given X and a consistent regression function of X on Y. This is

achieved when the conditional distribution Is one of the distributions:a) binomial,

Poisson, Pascal or b) a right translation of these. In a) the conditional

distribution of Y is an x-fold convolution of another random variable independent

of X so that Y is a generalized distribution. A main feature of these

characterizations is that their proof does not depend on the specific form of the

regression function. Moreoverit is shown that the characterizations hold if the

regression function is replaced by any higher-order conditional moment. It is also

indicated how these results can be used for goodness-of-fit purposes.

* A shortened version of this paper is appearing in the Ann. Inst. Statist. Math.
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1. INTRODUCTION

Here we are concerned with characterizing the distribution of non-

negative integer-valued random variables (r.v.) X and Y in terms of

the conditional distribution of Y given X and the regression function

E(XIY) of X on Y. Several papers have appeared in this direction.

Korwar (1975) considered a conditional binomial or Pascal distribution

combined with linear regression and characterized the Poisson, binomial

and negative binomial distributions in the former case and the geometric

in the latter case. Dahiya and Korwar (1977) extended these characterizations

to bivariate X and Y under conditional distributions which are independent

binomials or Pascal and linear regression. Khatri (1978a),(1978b),using a

slightly more general approach gave similar results for the multivariate

case. A case of non-linear regression was treated by Xekalaki (1980) in

characterizing the bivariate Poisson distribution.

In this paper more general and unifying results are obtained by by-

passing the unnecessary details involved in obtaining a specific

characterization under a specific regression function. This is achieved

by appealing to the unicity of a solution of a first-order difference

equation. Specifically, it is shown that certain conditional distributions

along with the regression functions determine uniquely the distributions

of X and Y, hence also of (X,Y), This fact can be used to generate a

wide spectrum of distributions characterized under these conditions. For

example, given a conditioiial binomial distribution (of Y on X), we may

choose an arbitrary given distribution for X, which in turn gives a specific

regression function; thus (see Section N), in addition to the .isiributions

mentioned earlier, characl erizat ions were obtained for the Iogrithmic

distribution and several generalized distributions, e.g. , llfyan, Poisson

binomial, binomial PoissoT), logarithmici binomial etc.

- -- - - .-. ~ - - .
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rinally, it is shown that the distribution of (X Y) can

be similarly characterized if we replace E(XIY) by the kth conditional

moment E [Xkly]. for some value of k. It should also be added that the

present approach goes through in the multivariate case, which will be

treated in a subsequent paper.

2. SOME PRELIMINARIES

We shall make use of the following easily verified combinatorial

identities:

x = (y+l)(Y 1)+y M (2.1)

x()A)yk) +A, 1(y 1 +~Ay(),(.)

x k(Y)= A(y)(k) +klrkl)+- +o(y) (22Y(y+l) (2.)

k\x-l]= k -i% /-,2). k-i

xkC+yl) c( )/x+Y+k-l +C ()+Y+k-2" .).+Co(y)(X+Y-l)

where the Ai(y),Bi(y),Ci(y) denote polynomials in y of degree k. In

(M m) m and r are integers and r.0.

Moreover, a great role in the sequel is played by

Theorem 2.1 (Goldberg 1958, p.63). The linear difference equation

of order n

f0(k)Ykn+fl(k)Ykrl+..fn 1 (k)Yk~+fn(k)Yk g(k)

over a set of con~ecutive integer values of k haf one, and only one,

solution for- which values- at n conseculivc k-valu,,s ,arc alrilrarily

prevcrihod.
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3. THE MAIN CHARACTERIZATIRN THEOREMS

Certain forms of the conditional distribution p(ylx) of Y

given X~x together with the regression function m(y) = E[XIY:y] of

X on Y determine the distributions of X and Y. It is to be observed

from the outset that in the main case considered here, namely, when

p(ylx) is an x-fold convolution of a non-negative integer-valued r.v.

with probability generating function (p.g.f.) h (), it is sufficient

to determine the distribution of either X or Y. This is so because the

p.g.f.'s g(u) of X, h(v) of Y and G(u,v) of (X,Y) Cacoullos and

Papageorgiou (1981b) satisfy (3.1) (see also (3.6a)-(3.1Oa);equivalently,

because of the identifiability of the mixtures defined by (3.6)-(3.10), with

mixing variable (parameter) x (see e.g., Teicher 1961).

h(v) = g(h0 (v)), G(u,v) = g(uh (V)) (3.1)

Here, we find first the probability function p(y) of Y.

A similar remark applies to the case in which p(ylx) determines a

shift to the right by x of a non-negative integer-valued r.v. with p.g.f.

h (v), so that denoting by hx(v) the conditional p.g.f. of Y given X-x,

h (v) = vXh'* (v), h(v) = h ?(v)g(v). (3.2)

A characteristic of the following characterizations is that their

derivation is independent of the actual form of the regression function

m(y); this was confined to be linear in the relevant statistical literature.

The simplification is achieved by e7n-oying a baFic theorem about the

uniqueness of a solution of linear difference c-quation (Theorem 2.1). The

difference equation governing p(y) in each case is obtained by using

Lemma 3.1. Let p(ylx) be nuch VhaI there exist p.g.f.'s ho, h* independ:nt

of x and fu, ctions ci of y (onl,") o that

h (v) = ho(v)j or h (v) Z vX," (v) for x=O,1,2,... (3.3)

xp(ylx) c (y)p(ytl x)1co(V)p(ylx)+c (y)p(y-1 Ix) (3.i)
I. . . .. ....
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Then p(yjx) and m(y) characterize the distribution of Y; hence of

X and (X,Y).

Proof. We have
-

m(Y) = P(Y)xPxxIyl

which by (3.4) can be written as

M(y) =c 1 (Y)P(Y+)+cO(Y)P(Y)+CI(Y)P(Y-1)"/P(Y) (3.5)

Since this is a linear second-order difference equation in p(y) the

assertion follows by Theorem 2.1 and in virtue of (3.1) and (3.2).

Note: In the applications of the Lemma, either c1 (y) or c 1 (y) is

zero so that (3.5) reduces to a first-order difference equation. Now

we state the main theorems.

Theorem 3.1. Let the conditional distribution p(ylx) be one of

the distributions (3.6)-(3.10). Let wn(y) = E[XIY~y] be an arbitrary

function of y consistent with p(ylx). Then p(ylx) and m(y) together

determine the distributions of X,Y and (X,Y).

p(ylx) (y)pq ) , y O,...,x, x=0,1,... (q=l-p) (3.6)

y.

p(ylx) = ix_ is enou y=x,x+l..., xo,2,... (3.7)

p(yjx) = Mx -I ( I-E =01-,(=y 1 38

Q Q

-xx (x) y  saOfe .,).p(yjx) = e y, , , .. l..(39

n )p q n x yY 0 1 x X = 0 1 , ... ( 3 .10 )

Proof. By Lemma 3.1, it is enough to show that for some p.g.f, ho0(v)

h ( ) = [h0(v ] ]

and, moreover, that p(ylx) satifies (3.4).
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Indeed, the ho(v) corresponding the distributions (3.6)-(3.10)

and the respective p.g.f.'s of X and 'Y (see (3.1)) are as follows:

h0(v) = pv+q, g(v) = h(!-) (3.6a)
p

h0(v ) = pv g(v) = h(- v )  (3.7a)
0 1-qv ' p+qv

ho(v) = (Q-pv)- ,g(v) h(Qvl) (3.8a)

h v e)(v-i)gl ) h( lo I+) (3.9a)

0A

1/nh0(v) =(pv+q)n, g(v) h pq) (3.10a)

As regards (3.4), by using (2.1) for (3.6) and (3.10), (2.2) for

(3.7) and (2.3) for (3.8), we obtain the respective difference equations

(recurrences) of the first order

m(y) y-q(y-1) P +y y0,,... (3.7b)

r(y) = (y+i)g p(y) Y=,,.-. (3.8b)

P p(y) ""m(y) = Y (+l) -(y3.9,,..
A PY)

A p(y)""

m(y) = 1 (ytl) p(y+l) + y O (3.1Ob)
np p(y) n

Hence the proof of the theorem is complete.

The explicit solutions of the above difference equations (3.6b)-(3.10b)

are respectively

P(Y) = PM( My (k). k)-) y12..(.c
p(y) = p(1)q y-I y ,- y=2,3,... (3.7c)

k =1

P(Y) =,, k(:O ii 1 k) k), =,2..(3.8c0
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p(y) p(0) y - mk(y y=1,2. (39c)k+l

where p(0) or p(1) are determined from the condition p(y):l.

y
Notice that (3.6) is a special case of (3.10) with n=l. Also

that (3.7) and (3.8) correspond to the two versions of a Pascal r.v.,

which denotes the number of failures in (3.8) and the number of trials

up to the xth success in (3.7).

Next we consider the case described by (3.2). We prove

Theorem 3.2 Let p(ylx) be one of the distributions (3.1l)-(3.13).

Let m(y) be consistent with p(ylx). Then p(ylx) and m(y) together

determine the distributions of X,Y and (X,Y).

p(yjx)=<yx)py- x (3.11)

p(y-x) = e X y-x yx, x=0,l,... (3.12)P(Yl ) = e (y-x).'''

N+y-x-I p y-X N

p(Ylx) N-1)(Q) (1- ~ y X>O, (P=Q-) (3.13)

Proof. Apply Lemma 3.1 to (3.1l)-(3.13) with h given, respectively, by

h (v) = (pv+q)n (3.11a)

h (v) e A (v - l )  (3.12a)

h (v) (Q-Pv)- N  (3.13a)

Now using the identity

x n y, 'IIn nn

e ca (yb/ m=y) y ( -(n-y+1 ) n h f r

we can write m(y) for (3.11) in the form
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Mn(y) =! ) - q -1m(y-l). (3.11b)
y-(n-y%) q p(y q p(y)

For (3.12) we easily find

m(y) = y-X (3.12b)re~X)

and for (3.13), making use of the identity

x(N+y-x-l) Nty-x- i\ .. .. N-y-x-2\+ N~y-x-2
xLN-1 /: y ( N-1 ,-.y-) N-1 )x -

we have

m(y) = y-(N4 y-l) P p(y-l) + m(y-l) (3.13b)Q p(y) Q py

Here again p(y) is obtained as the solution of the corresponding first-

order difference equation. In point of fact, we have

(- ,Y n-k+l+m(k-1)
p(y) = p() k-T3(k)3110

p(y) = p(O) AY T -(1 I (3.12c)
I I1 k-in(k)

yP(y Y m(k-l)-(N+k-l)P(Y) = P(0)(Q/ FT~ )k 31e
k= m(k)-k

where p(O)is also determined since I p(y)=l.
y=O

Finally, we give another set of characterizations under the assumptions

of Theorem 3.1, i.e. (3.6)-(3.10), replacing m(y) = E[XIY=y) by a

higher conditionpl moment mk(Y) = E[xk Iy=y] for a k>l.

Theorem 3.3. For a k>1, let nk(y) be given function of y which

is consistent wlth one of the conditional distributions (3.6)-(3.10).

Then p(yjx) and mk(y) together determine p(y) up to k-I arbitrary

probabilities, say, p(l),...,p(k-l).

Proof. By using the generalized identities (2.3)'-(2.3)' and working as

in Theorem 3.1, we obtain a k-th order difference equation in p(y).
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Hence the ass tion.

Note. The undetermined p(i),...,p(k-l) may be obtained by using e;g. as

initial conditions the values of m(y) for y=l,...,k-l, since we always
W

have the condition p(y)=i, thus determining p(0).
y=0

4. SOME APPLICATIONS-COROLLARIES OF THEOREM 3.1

It was already pointed out that in characterizing the distribution

of X,Y and (X,Y) in terms of the conditional distribution p(yfx) of

Y given X~x and m(y)=E[XYy], the regression function m(y) must

originate from some non-negative integer-valued r.v. X and be consistent

with .p(ylx). This is the spirit of the following characterizations-

applications of Theorem 3.1. In the applications of Theorem 3.1, it should

be observed that, for a specific r.v. X,Y has the generalized (compound)

distribution of X by another r.v. Z. (denoted by XvZ.) since Y has1 1

the representation

Y = ZI +-.Z X

where the Zi are i.i.d.,with p.g.f. h0(v), independent of X.

The following characterizations, in addition to the usual discrete

distributions, cover some more involved generalized discrete distributions,

of which the more interesting ones are presented here.

Proposition 4.1. Suppose (3.6) holds. Then we have:

(a) For some X>0

m(y) =yq ,y

iff X is Poisson (M); then Y is also Poisson (Ap) and (XY) is a

bivariate Poisson-Bernoulli model, studied by Leiter and Hamdan (1973) and

Cacoulloz and Papageorgiou (1980).

(b) For some 0<p'=1-q'<l and some integer n>0

qpre(y) ; _ y+n qi 0,<yn.
q e4-P__;|



iff X is binomial (n,p'); then Y is also a binomial (n,pp*) and

(X,Y) is a special case of a bivariate binomial distribution.

(c) For some N>0, P:Q-1>0

m(y) = Qy +NPq y=Og,...

Q-Pq Q-Pq

iff X is negative binomial NB(N,P); then Y is also NB(N,Pp) and

(X,Y) is a bivariate negative binomial-Bernoulli model, studied by

Cacoullos and Papageorgiou (1981a).

(d) For some 0<0<1

1m~y) = -y y=1,29,...

m(0) = 1

log(l-6q) 1-eq

iff X is logarithmic (e); then Y follows a modified logarithmic (6,0'),

with 6 the probability of Y=O and e' its ordinary parameter, where

log(1-e )6 p() log-) l-Oq

(X,Y) is a bivari'te iogarithmic-Bernoulli model (cf. Cacouilos and

Papageorgiou, (1981b).

Remark. Cases (a), (b) and (c), m(y) = ay+b, y=0,1,... , as

considered by Korwar (1975). Case (d), exhibiting linearity only for

y>O, was missed by Korwar in view of the limitations of treating the

problem in terms of a specified regression function. The present more

general approach allows a variety of m(y), including those which

correspond to truncated versions of X. For example, if X is truncated

on the left at r, ri(y) is linear only for y~r under (3.6) and the

corresponding characterizations hold with appropriate modifications for

Y and (X,Y).
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(e) F1o some positive X and 6

M(y) y+ .qOS + l (c1 )
m•y = y=O,l..

S (c)
yl

where S n(t) is a Stirling polynomial defined by Charalambides (1977),
n

S n(t) = S(n,k)t k , c Ae-ep
k=O0

and S(n,k) denotes a Stirling number of the second kind,

iff X has a Neyman distribution, i.e., Poisson (A) vPoisson (8);

then Y has also a Neyman: Poisson (A) vPoisson (6p) and (X,Y),

with pgf

G(u,v) = exp[A{ee[u(q +pv -  -

is a special case of a bivariate Neyman Type I distribution, Holgate (1966).

(f) For some O<p'=l-q'<l, A>0 and an integer n>O
V

C (c^)
M() y+1 n d2
re+pyq = y l n ( c 2 ) -

where C (t) is the polynomial, Charalambides (1977),y,n

C y,n(t) = I C(y,k,n)tk c2 = X(q.,p'q)nk=0

and C(y,n,k) are the C-numbers,iff X is Poisson (A) v binomial (n,p');

then Y is also a Poisson (A) v binomial (n,p'p).

It is worth noting that (X,Y) with p.g.f.

G(u,v) = -Ii]

is a special case of the bivariate Poisson binomial type I distribution

studied by Char-alahmides and Papageorgiou (1981).
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(g) For some YP'Q-l>O, )X>Q and an 14>0

Pq C Y1 (c 3
M(Y) Y- Q- CYS.N(c 3

where

cy'N (t) C(y,k -N)t 3 - )(Q-Pq)
k=O

iff X is Poisson (A) v negative binomial (N,P); then, Y is also

Poisson *(.) v negative binomial (N,Pp).

(h) For some O~p'=-q'<l; )>O and an integer n>O

AqS yl (c)4

M() S (c + y
ysn 4

where

S Y9, (t (n k Sy~k~ k' c 4 e-X~q-p'e-PI,

k=O

iff X is binomial (n,p') v Poisson W'; then Y is also binomial

(n,p') v Poisson (Xp).

Mi For some Oe'Iq<,<*lq< and positive integers n,n*

m(y) = p y+l,n,n* (c5 + y , O Eynnf,
q*+p~:q C yn,n* (c 5

where

c ynn.(t) = (n) k C(y,k,n*)t k

and

c p,(q,,+pq)n*fqp(,;pq )n,,

iff X is a binomial (n,p') v binomial (.n*,p'-); then Y is also a binomial

(n,pl) v binomial (n*",p~p)

(j) For some P-Q-1>0. 0<p'=l-q*<l an integer n>0 and an N>0

M(Y) = -y Pg. IC T' =012.
y,n,-N 6
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where
wher c t (n)k  C(y,k,-N)t k

Yn,-N~t k=O

and
-i1

c6 p'(Q-pq)-N (qp(Q-Pq) -N)

iff X is binomial (n,p') v negative binomial (N,P); then Y is

also a binomial (n,p') v negative binomial (N,Pp).

(k) For some PQ-1>0, X>O and N>O.

Aq Sy~ (C7

m(y) = AqS,(C 7 ) yOl,2,..,

where

Sy N(-t) (-l)k(-N)k S(y,k)t
k

k=O

and

c7 = pe-P(.Q-pe-XP)-1

iff X is negative binomial (N,P) v Poisson (M); then Y is also a

negative binomial (N,P) v Poisson (Xp).

(1) For some O<p'=1-q'<l,P=Q-l>0, N>O and an integer n>O

C (-C)
m(y) = Py q  Y+1,-Nn 8 - + y y=O,l,2,...

y,-N,n 8

where

Cy-N (-Il)k(-N)k C(y,k,n)tk

and

c P(q+p.q)n{Q(qtp'q)n)

iff X is negative binomial (N,P) v binomial (n,p'); then Y is

also a negative binomial (N,P) v binomial (n,p'p).

(m) For some PQ-1>0, Pf.Q-1>0 and N>O, N>O

10(y) = y.......-P .: y!,d Nc-9)q
C . y.+,-N-N (-C9)
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w h e r e ( -C) k ( N ) e
'y_,N.(t --N*lk- kCykN')t

Y9 N k=O

and

C9 = (f--'QN? QPQ--*)N l

iff X is negative binomial (N,P) v negative binomial (N,?;?); then. Y

is also negative binomial (N,P) v negative binomial (N.IP*' )

(n) For some o<el, X>O

Xq S* yl.(c)
M(y) = - 0 + y ,

- XqS* (C )
m(O) =1 0log( l-Oe - )

where

S: ,(t) (k-l)! S(y,k)tk

k=1

and
-1

clO0  ee- P{l-e - }

iff X is logarithmic (e) v Poisson (A); then Y is also a logarithmic

(e) v Poisson (Xp).

(o) For some 0<8<I, Op"=l-q"<l and an integer n>O

m(y) = P .c +1 ( n 1 1) y=1 2

q"+p"q C*'y,n(C 11) +.

m(O) = -1 p'q C (C)

logO -e(q+pq)n} q'+p'q ln 11

where
':~nt) (k-)'C(y,k,n)t 

k

k=1

and
-i=i e(q ",p q)nfl- G(q",p .q)n)

C , i . .. . . a . . . . . - .. . . . . , . . .." '
f

. .
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iff X is logarithmik (0) v binomial (n,p'); then Y is also logarithmic

(0) v binomial (n,p'p).

(p) For some 0<6<1, P-Q-I>0 and n>O

m(Y) = P pq _ y+1,-N(C 12 y=1,2...
Q-Pq C*, _N (cl2

m(0) = 1 Pq-N ± -_N c1 2)
log{l-B(Q-Pq)-N  Q-Pq

where

C* y,-N(t) (k-l). C(y,k,-N) t k

k=1

and

c2 (Q-Pq) -N{l-(Q-Pq)-N)

iff X is logarithmic (0) v negative binomial (N,P); then Y is also a

logarithmic (8) v negative binomial (N,Pp).

Proposition 4.2. Suppose (3.7) holds. Then we have:

V (a) For some O<p'=l-q'<l

m(y) = _qp  y+=,2,...,
q p+q q"p+q

iff X is geometric (p'); then Y is also geometric Cpp).

(b) For some 0<0<1

(S+ep)Y .1.qY-1
m(y) = y-q y=l, 2 ,...

(q+ep)Y-q y

iff X is logarithmic (e); then Y is a logarithmic () v geometric (p).

Proposition 4.3. Suppose (3.8) holds. Then we have

(a) For son:e P=Q-1>O and a X>0

M(y) C +1,- (c 1 3 ) =0 1 2 .

where C Cl(t) ir-defi,-d under Proposition ';.I (g) and
Ly....
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C1 3 = -

iff X is a Poisson (A); then Y is a Poisson (A) v geometric (1/Q).

(b) For some O'p=l-q<l and an integer n>O

() C Y+I 'n,-l (C 14') y=O,1,2, ... ,9re(y) = -. y1n,11 - y

C ,n, 1 (c14)

where C yn,_1(t) is defined under Proposition 4.1 (j) and

c 1 4 = pQ-1 (q+pQ-')-

iff X is a binomial (n,p); then Y is a binomial (n,p) v geometric

(/Q).

(c) For some P*=Q'-I>O

C y+l,-N -1( -c15 )

M(y) - Cy,_ _i(_c15) - y y=0l2

where C _N (-t) is defined under Proposition 4.1 (m) and

-1- -1

c 1 5 = P'Q{Q,-PQ--

iff X is a negative binomial (N.P'); then Y is negative binomial

(N,P') v geometric (1/Q).

(d) For sone O<e<l

cf. (c )
re(y) : - (c,-

y,_(C6-l, yl2,..

(O)16
log(1-eQ- 

)

where C,' (t) is defined under Proposition 4.3 (p) and
y,-l

c -16 = Q-1 (-e -1Q-

iff X is a log.arithmic (); then Y is a loearithmic (0) v geometric

(1 /Q).



Proposition 4.4. Suppose (3.9) holds. Then we have:

S(a) For some A>0 and some 0>0

S (my+y) ,7 c1  8e -
, y0O,l,2,

5(c 1 7
M(y) = • Sy(c 17)  , 17 = ...

where S y(t) is defined under Proposition 4.1 (e)

iff X is a Poisson (); then Y is a Poisson (O)v Poisson (A) and

(X,Y) is a bivariate Poisson-Poisson model studied by Leiter and

Hamdan (1973) and Cacoullos and Papageorgiou (1980).

V (b) For some O<p=l-ql and an integer n>O

m(y) = 
Sy+,n (18)

y,n(c 18)

where S (t) is defined under Proposition 4.1 (h) andy,n

c1 8 = pe (q+pe- )- I ,

iff X is a binomial (n,p); then Y is a binomial (n,p) v Poisson

(M).

(c) For some P=Q-1>0 and an N>O

(y) S N c19) y0,1,2,.
SY, - Nc01) "', ,

where S _N(-t) is defined under Proposition 4.1 (k) and

S9=P- x (Q-pe- x)-I1c 1 9 :peX Qp~

iff X is a negative binomial (N,p) then Y is a negative binomial

(N,P) v Poirson ),).

(d) For some 0<C<1
m(y) SVt1  20 o)

S, (c 20)M(Y) -
y c20

m(0) - 20 4o(]O-,

lJ , ,, _ ,,.... .... _ . .... ....... - O ... . .,,, )r I
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where S* (t) is defined under Proposikon 4.1 (n) and
y

0 e-(1-6e-)
20

iff X is a logarithmic (e); then Y is a logarithmic (8) v Poisson (A)

Proposition 4.5 Suppose (3.10) holds. Then we have:

(a) For some A>0

Cy+l,n(C21 c 1
) AIII(y) = Cy,n (c21 ) t y- c Xqn ,  y=0,1,2,...

nC (c n n1yn 21

where C (t) is defined under Proposition 4.1 (f)y,n .

1ff X is a univariate Poisson (? ); then Y is a Poisson (A) v binomial

(n,p) and (X,Y) is a bivariate Poisson-binomial model studied by

Cacoullos and Papageorgiou (1980).

(b) For some 0<p'=l-q'<l and an integer n*>0

m y) C+l,n~n (c22 ) + y 0<y.<n 'n
nCynn c2 2  n

where C . (t) is defined under Proposition 4.1 (i) and

y,r ,n

c 22 = p'qn(qp.qn)-I,

iff X is a binomial (n',p'); then Y is a binomial (np') v binomial

(n,p).

(c) For some P=Q-1>0 and an NT>O

Cy+1 -N,n(-C23) V
mI(Y) =+- v=,12,.nC s-Nn(-c 2) n

where CyN,n (-t) is defined under Proposition 4.1 (1) and

C2 3 = pqn(Q._)'qrn)-1

iff X is a negative bin'mial (N,P); then Y is a negative binomial

(N,P) v 1-inomia] (n,p ).
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(d) For some 0<0<1

Ci' (c )
m(y) Cy+ln 24)=( + Y, yI, ,..

nCh (c 24) n
y,ii2

m(0) = ,n (c24)

n log(l-eqn)

wh-ve C* ,n(t) is defined under Proposition 4.1 (0) and
ylin

c24 = eqn(0-eq n) -

iff X is a univariate logarithmic (6); then Y is a logarithmic

(0) v binomial (n,p).

5. SOME APPLICATIONS - COROLLARIES OF THEOREM 3.2

Proposition 5.1. Suppose (3.12) holds. Then we have:

(a) For some 0>0

m(y) = y-y y=,, 2 ,...

iff X is a univariate Poisson (e); then Y is also a Poisson (8+X).

(b) For some V>0

H'y-(B)

m(y) = y-y 1/2 y=0,1,2,...

(2p) Hy (8)

where H* y(t) are the modified Hermite polynomials, Kemp and Kemp (1965

defined as

[1/2y] y.'t y - 2 j

H,: (t) y j=0 (y-2j).' !21

and F=-(2 -

iff X is a± dbj Poisson (i.e. X=2Z where Z is a Poisson (1));

then Y is a iler-mite ,istrihution,i.e., a convolution of an ordinary

Poisson with a doublet Poisson.

(c) For, some 0>0 and some V>0

A {)-1 ,S(lcf
M(y) z y C, , 2,...

A (),,0S.(4'j(-)

LA Y
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where

A y{),,S(t)) : Y-(t)j-0 ( -)J jt

and SW(t) was defined under Proposition 4.1 (e),

iff X is a Neyman (,e); then Y is a "Short" distribution (,1i,O),

Kemp (1967),i.e., a convolution of a Poisson (X) with a Neyman (v,6).

6. SOME STATISTICAL APPLICATIONS OF THE CHARACTERIZATIONS

The preceding results, in addition to their probabilistic interest,

can be used in goodness-of-fit tests in a variety of situations.

For illustration, consider the case in which records X) of accidents

and corresponding fatal accidents (Y) are available for a series of

periods. Then we may be faced with identifying the distribution of X

and Y under the natural assumption that Y given X is binomial.

This is the situation described by (3.6). A possible test, within the

framework of these characterizations, is to look at the regression

function m(y) of X on Y. Thus, if m(y) is linear

m(y) = a+by, y:0,1,...I

then (Proposition 4.1 (a),(b),(c)), a regression line with slope b=l,

shows that X (hence also Y) is a Poisson, a b<l indicates that X

(hence also Y) is a binomal and a b>l suggests a negative binomial

for X and Y. On the other hand, a line m(y) = by with b>l for

y>1 and an isolated point at y=O (Proposition 4.3 (d)) indicates a

logarithmic X.

Similar rremarks can be made concerning the cases of more comnplicatcd

regrcssiori furz oi ens., whici a. a rule, tale u5 away fr:-. t!-..Lm Q

cla .,:Jcal di ,crett di:;trihit on. Thizs, however, iFs 1eyond the scope

of the present investigation and we shall not purue it here anay further.
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